top of page

REMOTE SENSING

Scientific exploration of the solar system is driven by trying to understand fundamental questions regarding how Earth and our solar system formed and evolved over time.  In my research, I combine laboratory measurements (see below) with remote sensing observations across visible, near- and thermal-infrared wavelengths to address fundamental questions on the formation and evolution of airless bodies like the Moon, Mercury, asteroids and planetary satellites (e.g. Phobos and Deimos).

Publications

Allen, C. C., B. T. Greenhagen, K. L. Donaldson Hanna, and D. A. Paige (2012), Analysis of lunar pyroclastic deposit FeO abundances by LRO Diviner, Journal of Geophysical Research, 117, E00H28, doi:10.1029/2011JE003982.

​

Cheek, L., K. L. Donaldson Hanna, C. Pieters, J. Head, and J. Whitten (2013), The distribution and purity of anorthosite across the Orientale Basin: New perspectives from the Moon Mineralogy Mapper data, Journal of Geophysical Research, 118, doi:10.1002/jgre.20126.

​

Donaldson Hanna, K. L. and A. L. Sprague (2009), Vesta and the HED meteorites: Mid-infrared modeling of minerals and their abundances, Meteoritics & Planetary Science, 44, 1755-1770.

​

Donaldson Hanna, K. L., L. C. Cheek, C. M. Pieters, J. F. Mustard, B. T. Greenhagen, I. R. Thomas, and N. E. Bowles (2014), Global assessment of pure crytalline plagioclase across the Moon and implications for the evolution of the primary crust, Journal of Geophysical Research, 119, doi:10.1002/2013JE004476.

​

Glotch, T. D., P. G. Lucey, J. L. Bandfield, B. T. Greenhagen, I. R. Thomas, R. C. Elphic, N. Bowles, M. B. Wyatt, C. C. Allen, K. Donaldson Hanna, and D. A. Paige (2010), Highly silicic compositions on the Moon, Science, 329, doi:10.1126/science.1192148.

​

Greenhagen, B. T., P. G. Lucey, M. B. Wyatt, T. D. Glotch, C. C. Allen, J. A. Arnold, J. L. Bandfield, N. E. Bowles, K. L. Donaldson Hanna, P. O. Hayne, E. Song, I. R. Thomas, and D. A. Paige (2010), Global silicate mineralogy of the Moon from the Diviner Lunar Radiometer, Science, 329, doi:10.1126/science.1192196.

​

Lucey, P., B. Greenhagen, E. Song, J. A. Arnold, M. Lemelin, K. Donaldson Hanna, N. E. Bowles, T. D. Glotch, and D. A. Paige (2016), Space weathering effects in Diviner Lunar Radiometer multispectral infrared measurements of the lunar Christiansen feature: Charactertistics and mitigation, Icarus, In Press, doi:10.1016/j.icarus.2016.05.010.

​

Pieters, C. M., K. Donaldson Hanna, L. Cheek, D. Dhingra, T. Prissel, C. Jackson, D. Moriarty, S. Parman, and L. A. Taylor (2014), The distribution and origin of Mg-spinel on the Moon, American Mineralogist, Lunar Highlands Special Issue, doi:10.2138/am-2014-4776.

​

Sprague, A. L., J. P. Emery, K. L. Donaldson, R. W. Russell, D. K. Lynch, and A. L. Mazuk (2002) Mercury: Mid-infrared (3-13.5 microns) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene, Meteoritics & Planetary Science, 37, 1255-1268.

​

Sprague, A. L., K. L. Donaldson Hanna, R. W. H. Kozlowski, J. Helbert, A. Maturilli, J. B. Warell, and J. L. Hora (2009), Spectral emissivity measurements of Mercury's surface indicate Mg- and Ca-rich mineralogy, K-spar, Na-rich plagioclase, rutile, with possible perovskite, and garnet, Planetary and Space Science, 57, 364-383.

LABORATORY SPECTROSCOPY

While remote sensing observations provide key insights into the composition and evolution of planetary surfaces, an important component to interpreting those remote measurements is a suite of laboratory measurements of well-characterized analogue amterials under the appropriate temperature and pressure conditions.  Using environment chambers at the University of Oxford and Brown University, I have measured the thermal emission of pure minerals, mixtures of pure minerals, lunar soils and meteorites under a range of environmental conditions including Earth-like, lunar-like and asteroid-like conditions.  These laboratory measurements are key for interpreting current and future thermal infrared observations of planetary surfaces and in better understanding the thermal gradients found in the upper 100's of microns in planetary regoliths.

Publications

Donaldson Hanna, K. L., B. T. Greenhagen, W. R. Patterson III, C. M. Pieters, J. F. Mustard, N. E. Bowles, D. A. Paige, T. D. Glotch, and C. Thompson (2016), Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon, Icarus, In Press, doi:10.1016/j.icarus.2016.05.034.

​

Donaldson Hanna, K. L., I. R. Thomas, N. E. Bowles, B. T. Greenhagen, C. M. Pieters, J. F. Mustard, C. R. M. Jackson, and M. B. Wyatt (2012), Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions, Journal of Geophysical Research, 117, E11004, doi:10.1029/2012JE004184.

​

Donaldson Hanna, K. L., M. B. Wyatt, I. R. Thomas, N. E. Bowles, B. T. Greenhagen, A. Maturilli, J. Helbert, and D. A. Paige (2012), Thermal infrared emissivity measurements under a simulated lunar environment: Application to the Diviner Lunar Radiometer Experiment, Journal of Geophysical Research, 117, E00H05, doi:10.1029/2011JE003862.

​

Jackson, C., L. Cheek, K. Williams, K. Donaldson Hanna, C. Pieters, S. Parman, R. Cooper, D. Dyar, M. Nelms, and M. Salvatore (2014), Visible-infrared spectral properties of iron-bearing aluminate spinel under lunar-like redox conditions, American Mineralogist, Lunar Highlands Special Issue, doi:10.2138/am-2014-4793.

​

Thomas, I., B. Greenhagen, N. Bowles, K. Donaldson Hanna, J. Temple, and S. Calcutt (2012), A new experimental setup for making thermal emission measurements in a simulated lunar environment, Review of Scientific Instruments, 83, 124502, doi:10.1063/14769084.

​

Williams, K., C. Jackson, L. Cheek, K. Donaldson Hanna, S. Parman, C. Pieters, M. Dyar, and T. Prissel (2015), Reflectance spectroscopy of chromium-bearing spinel with application to recent orbital data from the Moon, American Mineralogist, 101, 3, 726-734, doi:10.2138/am-2016-5535.

bottom of page